2,234 research outputs found

    Discovery of a tight correlation for gamma ray burst afterglows with `canonical' light curves

    Full text link
    Gamma Ray Bursts (GRB) observed up to redshifts z>8z>8 are fascinating objects to study due to their still unexplained relativistic outburst mechanisms and a possible use to test cosmological models. Our analysis of 77 GRB afterglows with known redshifts revealed a physical subsample of long GRBs with canonical {\it plateau breaking to power-law} light curves with a significant {\it luminosity LXL^*_X - break time TaT^*_a} correlation in the GRB rest frame. This subsample forms approximately the {\it upper envelope} of the studied distribution. We have also found a similar relation for a small sample of GRB afterglows that belong to the intermediate class (IC) between the short and the long ones. It proves that within the full sample of afterglows there exist physical subclasses revealed here by tight correlations of their afterglow properties. The afterglows with regular (`canonical') light curves obey not only a mentioned tight physical scaling, but -- for a given TaT^*_a -- the more regular progenitor explosions lead to preferentially brighter afterglows.Comment: 15 pages, 5 figures accepted to ApJ

    The X-ray Jet in Centaurus A: Clues on the Jet Structure and Particle Acceleration

    Full text link
    We report detailed studies of the X-ray emission from the kpc scale jet in the nearest active galaxy, Cen A. 41 compact sources were found within the jet, 13 of which were newly identified. We construct the luminosity function for the detected jet-knots and argue that the remaining emission is most likely to be truly diffuse, rather than resulting from the pile-up of unresolved faint knots. The transverse jet profile reveals that the extended emission has the intensity peak at the jet boundaries. We note that limb-brightened jet morphologies have been observed previously at radio frequencies in some jet sources, but never so clearly at higher photon energies. Our result therefore supports a stratified jet model, consisting of a relativistic outflow including a boundary layer with a velocity shear. In addition, we found that the X-ray spectrum of the diffuse component is almost uniform across and along the jet. We discuss this spectral behavior within a framework of shock and stochastic particle acceleration processes. We note some evidence for a possible spectral hardening at the outer sheath of the jet. Due to the limited photon statistics of the present data, further deep observations of Cen A are required to determine the reality of this finding, however we note that the existence of the hard X-ray features at outer jet boundaries would provide an important challenge to theories for the evolution of ultra-relativistic particles within the jets.Comment: 27page, 8 figures, ver2, accepted for publication in the Ap

    Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2

    Get PDF
    The Ras oncogene products regulate the expression of genes in transformed cells, and members of the Ets family of transcription factors have been implicated in this process. To determine which Ets factors are the targets of Ras signaling pathways, the abilities of several Ets factors to activate Ras-responsive enhancer (RRE) reporters in the presence of oncogenic Ras were examined. In transient transfection assay, reporters containing RREs composed of Ets-AP-1 binding sites could be activated 30-fold in NIH 3T3 fibroblasts and 80-fold in the macrophage-like line RAW264 by the combination of Ets1 or Ets2 and Ras but not by several other Ets factors that were tested in the assay. Ets2 and Ras also superactivated an RRE composed of Ets-Ets binding sites, but the Ets-responsive promoter of the c-fms gene was not superactivated. Mutation of a threonine residue to alanine in the conserved amino-terminal regions of Ets1 and Ets2 (threonine 38 and threonine 72, respectively) abrogated the ability of each of these proteins to superactivate reporter gene expression. Phosphoamino acid analysis of radiolabeled Ets2 revealed that Ras induced normally absent threonine-specific phosphorylation of the protein. The Ras-dependent increase in threonine phosphorylation was not observed in Ets2 proteins that had the conserved threonine 72 residue mutated to alanine or serine. These data indicate that Ets1 and Ets2 are specific nuclear targets of Ras signaling events and that phosphorylation of a conserved threonine residue is a necessary molecular component of Ras-mediated activation of these transcription factors

    X-ray Emission Properties of Large Scale Jets, Hotspots and Lobes in Active Galactic Nuclei

    Full text link
    We examine a systematic comparison of jet-knots, hotspots and radio lobes recently observed with Chandra and ASCA. This report will discuss the origin of their X-ray emissions and investigate the dynamics of the jets. The data was compiled at well sampled radio (5GHz) and X-ray frequencies (1keV) for more than 40 radio galaxies. We examined three models for the X-ray production: synchrotron (SYN), synchrotron self-Compton (SSC) and external Compton on CMB photons (EC). For the SYN sources -- mostly jet-knots in nearby low-luminosity radio galaxies -- X-ray photons are produced by ultrarelativistic electrons with energies 10-100 TeV that must be accelerated in situ. For the other objects, conservatively classified as SSC or EC sources, a simple formulation of calculating the ``expected'' X-ray fluxes under an equipartition hypothesis is presented. We confirmed that the observed X-ray fluxes are close to the expected ones for non-relativistic emitting plasma velocities in the case of radio lobes and majority of hotspots, whereas considerable fraction of jet-knots is too bright at X-rays to be explained in this way. We examined two possibilities to account for the discrepancy in a framework of the inverse-Compton model: (1) magnetic field is much smaller than the equipartition value, and (2) the jets are highly relativistic on kpc/Mpc scales. We concluded, that if the inverse-Compton model is the case, the X-ray bright jet-knots are most likely far from the minimum-power condition. We also briefly discuss the other possibility, namely that the observed X-ray emission from all of the jet-knots is synchrotron in origin.Comment: 20 pages, 10 figures, accepted for publication in the Astrophysical Journal, vol.62

    Signatures of the disk-jet coupling in the Broad-line Radio Quasar 4C+74.26

    Full text link
    Here we explore the disk-jet connection in the broad-line radio quasar 4C+74.26, utilizing the results of the multiwavelength monitoring of the source. The target is unique in that its radiative output at radio wavelengths is dominated by a moderately-beamed nuclear jet, at optical frequencies by the accretion disk, and in the hard X-ray range by the disk corona. Our analysis reveals a correlation (local and global significance of 96\% and 98\%, respectively) between the optical and radio bands, with the disk lagging behind the jet by 250±42250 \pm 42 days. We discuss the possible explanation for this, speculating that the observed disk and the jet flux changes are generated by magnetic fluctuations originating within the innermost parts of a truncated disk, and that the lag is related to a delayed radiative response of the disk when compared with the propagation timescale of magnetic perturbations along relativistic outflow. This scenario is supported by the re-analysis of the NuSTAR data, modelled in terms of a relativistic reflection from the disk illuminated by the coronal emission, which returns the inner disk radius Rin/RISCO=3516+40R_{\rm in}/R_{\rm ISCO} =35^{+40}_{-16}. We discuss the global energetics in the system, arguing that while the accretion proceeds at the Eddington rate, with the accretion-related bolometric luminosity Lbol9×1046L_{\rm bol} \sim 9 \times 10^{46} erg s1^{-1} 0.2LEdd\sim 0.2 L_{\rm Edd}, the jet total kinetic energy Lj4×1044L_\textrm{j} \sim 4 \times 10^{44} erg s1^{-1}, inferred from the dynamical modelling of the giant radio lobes in the source, constitutes only a small fraction of the available accretion power.Comment: 9 pages and 6 figures, ApJ accepte

    High Energy gamma-rays From FR I Jets

    Full text link
    Thanks to Hubble and Chandra telescopes, some of the large scale jets in extragalactic radio sources are now being observed at optical and X-ray frequencies. For the FR I objects the synchrotron nature of this emission is surely established, although a lot of uncertainties - connected for example with the particle acceleration processes involved - remain. In this paper we study production of high energy gamma-rays in FR I kiloparsec-scale jets by inverse-Compton emission of the synchrotron-emitting electrons. We consider different origin of seed photons contributing to the inverse-Compton scattering, including nuclear jet radiation as well as ambient, stellar and circumstellar emission of the host galaxies. We discuss how future detections or non-detections of the evaluated gamma-ray fluxes can provide constraints on the unknown large scale jet parameters, i.e. the magnetic field intensity and the jet Doppler factor. For the nearby sources Centaurus A and M 87, we find measurable fluxes of TeV photons resulting from synchrotron self-Compton process and from comptonisation of the galactic photon fields, respectively. In the case of Centaurus A, we also find a relatively strong emission component due to comptonisation of the nuclear blazar photons, which could be easily observed by GLAST at energy ~10 GeV, providing important test for the unification of FR I sources with BL Lac objects.Comment: 39 pages, 6 figures included. Modified version, accepted for publication in Astrophysical Journa

    UVSat: a concept of an ultraviolet/optical photometric satellite

    Full text link
    Time-series photometry from space in the ultraviolet can be presently done with only a few platforms, none of which is able to provide wide-field long-term high-cadence photometry. We present a concept of UVSat, a twin space telescope which will be capable to perform this kind of photometry, filling an observational niche. The satellite will host two telescopes, one for observations in the ultraviolet, the other for observations in the optical band. We also briefly show what science can be done with UVSat.Comment: 6 pages, 2 figures, accepted for publication in the Proceedings of the PAS (Proc. of the 2nd BRITE Science conference, Innsbruck

    Particle Diffusion and Acceleration by Shock Wave in Magnetized Filamentary Turbulence

    Full text link
    We expand the off-resonant scattering theory for particle diffusion in magnetized current filaments that can be typically compared to astrophysical jets, including active galactic nucleus jets. In a high plasma beta region where the directional bulk flow is a free-energy source for establishing turbulent magnetic fields via current filamentation instabilities, a novel version of quasi-linear theory to describe the diffusion of test particles is proposed. The theory relies on the proviso that the injected energetic particles are not trapped in the small-scale structure of magnetic fields wrapping around and permeating a filament but deflected by the filaments, to open a new regime of the energy hierarchy mediated by a transition compared to the particle injection. The diffusion coefficient derived from a quasi-linear type equation is applied to estimating the timescale for the stochastic acceleration of particles by the shock wave propagating through the jet. The generic scalings of the achievable highest energy of an accelerated ion and electron, as well as of the characteristic time for conceivable energy restrictions, are systematically presented. We also discuss a feasible method of verifying the theoretical predictions. The strong, anisotropic turbulence reflecting cosmic filaments might be the key to the problem of the acceleration mechanism of the highest energy cosmic rays exceeding 100 EeV (10^{20} eV), detected in recent air shower experiments.Comment: 39 pages, 2 figures, accepted for publication in Ap

    Radiation from the Relativistic Jet: a Role of the Shear Boundary Layer

    Get PDF
    Recent radio and optical large scale jets' observations suggest a two-component jet morphology, consisting of a fast central spine surrounded with a boundary layer with a velocity shear. We study radiation of electrons accelerated at such boundary layers as an option for standard approaches involving internal shocks in jets. The acceleration process in the boundary layer yields in a natural way a two component electron distribution: a power-law continuum with a bump at the energy, where energy gains equal radiation losses, followed by a cut-off. For such distributions we derive the observed spectra of synchrotron and inverse-Compton radiation, including comptonization of synchrotron and CMB photons. Under simple assumptions of energy equipartition between the relativistic particles and the magnetic field, the relativistic jet velocity at large scales and a turbulent character of the shear layer, the considered radiation can substantially contribute to the jet radiative output. In the considered conditions the synchrotron emission is characterized by a spectral index of the radio-to-optical continuum being approximately constant along the jet. A characteristic feature of the obtained broad-band synchrotron spectrum is an excess at X-ray frequencies, similar to the one observed in some objects by Chandra. As compared to the uniform jet models, the velocity shear across the radiating boundary region leads to decrease and frequency dependence of the observed jet-counterjet radio brightness asymmetry. We conclude that a careful investigation of the observational data looking for the derived effects can allow to evaluate the role of the boundary layer acceleration processes and/or impose constraints for the physical parameters of such layers in large scale jets.Comment: 30 pages, 4 figures included. Modified version, accepted for publication in Astrophysical Journa
    corecore